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Chapter 1

A Big, Bad World

1.1 The Nature of Money
Before money, there was debt [2]. Money is a yardstick for measuring it. Sometimes
it takes the form of a gold coin. Not useful in itself, one accepts it because one
assumes other people will. Modern fiat money is not backed by gold, but takes the
form of pieces of paper bills or, more often, bits in the computer systems of banks.
Regardless of their manifestation, all forms of money are debt, which is a social
relation [3].

Money has a long history. A tale told about its origins is of a world of barter
in which people would visit markets to exchange ten chickens for an ox; money, it
is said, was invented to ease the burden of figuring out exchange rates. This is a
myth. No such barter societies have ever existed prior to the invention of money.
Instead, historically, societies used to be gift economies, in which people were mostly
self-reliant on their broader families, and they gifted goods to each other regularly
within their villages. These relationships are based on trust. The reliance on some
form of trust on society will be a motif which will reemerge as we try to redesign
money in the form of a blockchain.

The idea that one can transact with a stranger without trusting her is an idea
that came about with the invention of money. Money came about as a means of
tracking debt accumulated through violence such as wars and slavery. Historical
forms of money had a physical manifestation: sea shells or salt. The word salary
we use today hints at this history. Gold and silver were later adopted. Modern
money, such as USD, used to have backing in gold, so that one could exchange their
USD money for gold. The gold standard for USD was abolished in 1971. After
this, money issued is known as fiat, because it is by social agreement that we give
it value. Money is a collective delusion: If, one day, we all stopped believing in
money, it would instantly be worthless. The same is true for gold, sea shells, and
salt. Money is a social construct.

Money functions as a medium of exchange, as a common measure of value or
unit of account, as a standard of value or standard of deferred payment, and a store
of value [4]. These functions of money rely on the relationship of the individual with
the economic community that accepts money. Each monetary transaction between
two parties is never a “private matter” between them, because it translates to a
claim upon society [7].
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This gives rise to the need of consensus. The economic community must be able
to ascertain, in principle, whether a monetary transaction is valid according to its
rules. In a good monetary system, parties of the economic community must globally
agree on the conclusions of such deductions. In simple words, when someone pays
me, I must know that they have sufficient money to do so, and that this money given
to me will be accepted by the economic community when I later decide to spend
it. This judgement of validity consists of two parts: First, that the money in use
has been minted legitimately in the first place, the property of scarcity. Scarcity
is a necessary, but not sufficient, property of money. Secondly, that this money
rightfully belongs to the party who is about to spend it, and has not been spent
before, to protect against double spending, the property of ownership. Consensus
pertains to ensuring both scarcity and ownership.

The problem of consensus is solved differently in different monetary systems.
Gold coins had stamps whose veracity could be checked, while paper bills have
watermarking features making them difficult to duplicate. Such physical features
ensure the legitimacy of minting. The problem of double spending is trivial when it
comes to physical matter: If I give a gold coin to someone, I no longer hold that gold
coin and cannot also give it to someone else. When coins are digitized, the problem
of who owns what is solved by the private bank and payment processors. A private
bank centrally maintains the balance of a bank account to ensure a corresponding
debit card cannot spend more money than it has. In this case, a vendor’s terminal
connects to the bank’s servers to check the validity of the payment (and security
can only be ensured while the terminal is online). These cases involve a trusted
third party, the bank or the payment processor, to maintain a balance and make a
judgement on whether a transaction is valid. The central bank is relied upon for
the legitimacy of minting. Payment processors and banks who maintain account
balances and make a judgement on whether a transaction is valid are relied upon to
prevent double spending. The economic community depends on these third parties
and trusts them for availability and truthfulness.

The cypherpunk political movement and the wave of cryptographers working
on protocols in general have an inherent hatred for trusted third parties. For the
former, they amount to centralization of political power which they wish to see
eliminated. For the latter, it constitutes a technical challenge – if the role of the
trusted third party is fully algorithmizable, why not replace the party by a protocol
ran by the economic community themselves? It is somewhere in the intersection of
the two that blockchain protocols appeared.

A private bank can conjure up more money in someone else’s account, or remove
money from yours, and one’s only recourse against such actions, which can be
damaging to the economy, is legal. We rely on the functions of government, a trusted
third party, to prevent such actions. If a bank illegally takes away money from one’s
bank account, they can sue the bank. This is a treatment of adversarial behavior.
In the systems we will design, our goal will be to create systems that prevent
adversarial behavior by making it impossible, not by detecting it and treating it
when it emerges. These systems will be self-enforcable. Prevention is preferable to
treatment.

The question we try to answer is whether we can decentralize money by removing
some of these institutions of trust. We can remove private banks and people can be
their own bank; and we can remove the central bank, and money issuance can be
in the hands of the people. However, some trust in society will necessarily remain,
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as money is a social construct. Governments are elected by the people and, in that
sense, express the will of the people. It is a political question whether we want
to remove central parties from the picture. Removing the central bank removes
an important macroeconomic tool from the hands of government, which may have
long lasting and disastrous recession effects. Removing the private bank from the
picture makes each and everyone responsible for their own money: In case your
house in which your computer is stored burns down, you lose your money, contrary
to the case of a bank, where all your documents can be recovered through some
form of legal process. We will provide the means to eliminate centralization, but
it is not always clear that we should. Once we describe the system to do so, we
can choose which centralization parts we want to eliminate. For example, we can
create a system where private banks are unnecessary, but money issuance is still
centralized.

Because money is a social construct and it is conjured by social delusion, it
does not need legal backing to have value. We can rebuild money in the form
of code, as long as we can recreate the virtues of scarcity and ownership, and we
convince society to adopt it as currency. This is what gives rise to cryptocurrencies.
Similarly, because private contracts between individuals are also a social construct,
we can also recreate these in the form of code. This is what gives rise to smart
contracts.

Money and its functions, as well as contracts and their function, have been
traditionally codified in the form of law. As computer scientists, our role when
implementing cryptocurrencies and smart contracts will be to identify the compu-
tational properties of money and contracts. What computational role does each
of the virtues of money play in ensuring its correctness and security? Which of
these can be modified? What are the computational aspects of rules, regulations,
and processes? When money and contracts are implemented in code, and analyzed
in the theoretical framework of computer science, these will become precise and
explicit rather than implicit.

1.2 The Adversary
Our systems will be designed in the presence of an adversary. This adversary will
have various nefarious goals and may try to act against the rest of the parties. We
will highlight the parties whose interests we want to defend and designate them as
the honest parties. The honest parties follow the protocol as described by us, the
protocol designers. A party that does not exactly follow the protocol is considered
adversarial. We will only provide assurances to the honest parties when we embark
on our security proofs. This follows the path of cryptography: If you want security
assurances, you must play honestly.

We consider only one adversary, not multiple. That single adversary can spawn
nodes that are acting on her behalf. The treatment in which the adversary is
considered to be a single party with an overarching goal in mind gives the adversary
more power. She is a more powerful adversary than an adversary who is fighting
against another. We will design our protocols to be secure against this single,
overarching adversary.

We will design our systems to be resilient against very powerful adversaries,
such as state actors. Our adversary can really be truly malicious. She can break
laws. She might be irrational and decide to lose money, just so that we can suffer,
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even if there is no monetary gain for her. She can control corporations. She can
control governments, including the legislative, executive, and judicial branches of
the government. This means she can change the laws and outlaw our protocol.
She can take over a country’s or multiple countries’ courts, issue subpoenas, or kill
people to achieve her goals, and do this all in secret. We will not rely on these
centralized institutions for our security, but will try to design protocols that are
resilient in these settings. In light of this model, it becomes clear that there is
very little we can rely on. For example, we cannot rely on someone proving their
identity by presenting their government-issued passport, as an adversary controlling
the government can issue an arbitrary number of fake passports.

Ideally, we want our protocols to survive and remain operational as long as a
country’s Internet infrastructure is operational, and people are allowed just a mod-
icum of private life. Compare this to centralized services, such as Google’s search,
or Amazon’s market. These services really cannot hope to survive an adversarial
government. A subpoena issued by a court can order them to shut down, and they
must comply. On the contrary, our decentralized protocols will not be subject to
court decisions. In that sense, our protocols are sovereign — they enjoy the same
level of independence as a stand-alone country. For a court to shut down a de-
centralized protocol, it cannot order its servers to shut down, because there are no
servers. Instead, it must target each of its participants, a much more difficult task.

Following the cryptographic tradition, and highlighting our computer science
methodology, our protocols are structured upon three pillars [5]:

1. Formal definitions play a central role. They specify the desirable properties
of our protocols. As we will see, these can often be quite tricky to develop.
One such example is what it means for a ledger to have safety, a topic we will
return to when we speak about ledgers.

2. Clearly articulated assumptions allow us to understand the limitations
of our protocols. Our protocols never work unconditionally, and we must
restrict our model to obtain security. One such example is the honest majority
assumption, a topic we will return to when we speak about proof-of-work.

3. Rigorous proofs of security give us the guarantee that our protocols are se-
cure, as long as our assumptions hold. Instead of employing ad hoc arguments,
the proofs are mathematical theorems employing computational reductions,
and they assert that the protocols are secure for all adversaries.

We will model the adversary as a Turing Machine interacting with the honest
parties, each of which will also be modelled as a Turing Machine. For the time being,
the Turing Machine formalism is unimportant: Intuitively, we will simply imagine
our adversary as a computer running an adversarial computer program which we
will denote A. Similarly, we will imagine the honest parties as separate computers
all running the same program, the honest program, which we will sometimes denote
Π. The adversary and the honest parties are all directly or indirectly connected
to each other in a common communication network. We will return to the formal
model of computation and the network at a later time to make our arguments
rigorous.

The critical part that will allow us to prove our security through computational
arguments is that we will limit the power of the adversary: We will require that the
adversary runs in polynomial time with respect to its input size. We will also allow
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the adversary access to randomness. The same constraints are applied to the honest
parties. We will denote such parties PPT , probabilistic polynomial-time, parties.
Formally speaking, these are modelled as Turing Machines [8] with additional access
to a random tape. In practice, when thinking about these machines, we simply
think of them as regular computer programs (in, say, Python, C++ or JavaScript)
in which we have access to a random number generator, which we assume produces
fresh, uniform and completely fair randomness every time it is called.

Our security is analyzed with a security parameter in its foundations: The
parameter κ. This parameter denotes what probability of failure we are willing to
accept in our protocols: We can tolerate probabilities that are roughly 2−κ. For
κ = 256, this probability is extremely small: It is extremely more probable that a
global earth catastrophy is caused by an asteroid hitting it during the second you
read this particular sentence than a probability 2−256 occurring. Simply put, these
events never occur.

However, we will keep the κ parameter free throughout our analysis, but we will
demand that the probability of failure drops close to exponentially, or more precisely
superpolynomially as κ increases linearly. Let us make this definition precise. If a
function f(κ) denotes the probability of failure, we want f to be approximately
on the order of 1

2κ or less. Any probability in the form of 1
κ3+κ+9 , or any other

inverse polynomial is unacceptable, as the probability does not drop fast enough
with respect to κ. Certainly any constant probability such as 0.0001 is unacceptable.
We want our function to be eventually smaller than any inverse polynomial. Such
functions are called negligible.

Definition 1 (Negligible function). A function f(κ) is negligible if for any poly-
nomial degree m ∈ N, there exists a κ0 such that for all κ > κ0:

f(κ) <
1

κm

Let us give some motivation about our choice of the class of negligible functions
as our acceptable probability of failure. Suppose that a PPT adversary A succeeds
in breaking our protocol with some non-negligible probability p(κ). This means
that p(κ) is equal to some inverse polynomial in κ. But now consider a different
adversary A′ that operates by running the adversary A multiple times. In partic-
ular, A′ simulates the execution of A as many as 1

p(κ) times. If the success of A is
independent in all of these runs, this causes the probability of A′ to become quite
close to 1. Additionally, the adversary A′ still runs in polynomial time, because it
takes time proportional to the time needed to simulate A (which is a polynomial
due to A being a PPT) and also proportional to 1

p(κ) (which is a polynomial because
p(κ) is non-negligible).

Therefore, any inverse polynomial probability of failure would be unacceptable.
We choose to accept negligible functions exactly because the probability of failure
cannot be amplified in this manner. If an adverary A succeeds with negligible prob-
ability, an adversary A′ that simulates A must run the simulation an exponential
number of times in order to achieve anything beyond a negligible probability. Given
that we have constrained our adversaries to be polynomial-time, this is impossible.

The negligible probability of failure is the standard treatment in modern cryp-
tography [5]. Beyond the above argument pertaining to the polynomiality of adver-
saries, negligible functions are easy to work with because the observe certain closure
properties. In particular, multiplying a negligible function with a polynomial yields
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a negligible function. As constants are polynomials, scaling a negligible function
by a constant yields a negligible function too. Of course, multiplying something
negligible with something negligible keeps it negligible, and taking any power of a
negligible function keeps it negligible.

negl · negl = negl
const · negl = negl
poly · negl = negl

∀k ∈ N : neglk = negl

1.3 Game-Based Security
We will soon give detailed and rigorous definitions of what security properties we
want our protocols to achieve. These will be our design goals. Once we have
clearly articulated these goals, we will attempt to formally prove that our protocols
attain the desired properties. Our security goals will be written out in the form of
a cryptographic game. These games are algorithms that, given a particular PPT
adversary, attest to whether the adversary has been successful in breaking the
protocol.

You can imagine the game as a piece of code that evaluates the success of an
adversary. The game will be specific to the protocol and property we wish to
describe, and be given a relevant name. The game is also known as the challenge.
To use one of the games, first, we decide which adversary we want to evaluate, and
fix the source code that defines this adversary. We call this adversary A, denoting a
particular computer program. We are only interested in evaluating the performance
of PPT adversaries against the game. We then run the game, which is a different
computer program, and give it the source code of the adversary as a parameter.
We also give the game access to run the honest protocol Π. The game will simulate
some interaction between the adversary and the honest parties. The game executes
the adversary and the honest parties and facilitates some data exchange between
them. It then takes the output of the adversary and decides whether the adversary
has been successful in their endeavour to break the protocol. The game outputs a
boolean output: true if the adversary was successful in breaking the protocol, and
false if the adversary was unsuccessful. It is bad for us, the designers of the protocol,
if there exists some adversary such that the game outputs true. The execution of
the game never occurs in real implementations of the protocol. It is simply a tool
we use at the mathematical level to argue about the security of our design.

The adversary and honest party run in polynomial time in the security parame-
ter κ. When we say that the adversary A is polynomial, we mean that the adversary
runs in polynomial time with respect to its input. More specifically, there exists
a polynomial p(κ) such that, given any input of size κ, the adversary runs for at
most p(κ) steps. If we want to give the adversary the option to run in polynomial
time with respect to the parameter κ, we must issue the call to the adversary with
an input of size κ. We denote this by writing A(1κ), meaning that we call the
adversary with an input of a string consisting of just the character 1 repeated κ
times. Because |1κ| = κ, the length of the input is κ, and the adversary can run
in p(κ) time. Note that it would be inappropriate to call the adversary without
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arguments as A(), as in this case the adversary has no time to perform the attack.
It would also be inappropriate to call the adversary using A(κ), as in this case the
adversary would only have log κ time available (since |κ| = log κ). We may have
more information to pass to the adversary as input, such as a public key. If that
information already has length κ, this is sufficient for our purposes, and we do not
need to pass the adversary the extra argument 1κ. You can think of the argument
1κ as giving the adversary enough time to operate.

The format of a generic game is illustrated in Algorithm 1. The challenger is
parameterized by the code of the honest party Π and the code of the adversary
A. It is invoked with the security parameter κ (note that there is no restriction
that the challenger runs in polynomial time, as it is merely a mathematical tool).
It invokes the honest party, giving him polynomial time in κ to run, as well as
some additional arguments that will be defined by the particular protocol. It then
runs the adversary, giving her1 polymomial time in κ to run, as well as some ad-
ditional arguments which may depend on the honest party’s behavior. Depending
on the game, the challenger may invoke the honest party and adversary multiple
times, creating some interaction between them. Lastly, the challenger evaluates the
output of the adversary to ascertain whether she has been successful in breaking
the protocol, and outputs a boolean value: 0 indicating that the protocol remained
unbroken, or 1 indicating that the adversary broke the protocol. The challenger is
illustrated diagramatically in Figure 1.1.

Challenger / Game

honest
Π

adversary
A

result

true/false

1κ

interaction

Figure 1.1: A game-based security definition shown diagramatically. The chal-
lenger invokes both the honest party and the adversary before deciding whether
the adversary was successful.

1As a convention, we will use the female pronouns for the adversary, the male pronouns for
the honest parties, and the neutral pronoun for the challenger. This helps write succinct and
easy to read sentences in which the “he” and “she” pronouns are used with clarity. As blockchain
designers in which adversarial thinking is a central tenet, we will take both roles of the honest
party and the adversary and argue from both sides when designing a protocol and reason about
its security.
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Algorithm 1 The form of a challenger for a game-based security definition.
1: function my-gameΠ,A(κ)
2: ▷ Invoke the honest party with poly κ time and more arguments
3: · · ·Π(1κ · · · )
4: ▷ Invoke the adversary with poly κ time and more arguments
5: result← A(1κ · · · )
6: ▷ Evaluate whether the adversary has been successful
7: if result indicates adversarial success then
8: return true
9: else

10: return false
11: end if
12: end function

As designers, the ideal goal for us would be to design a protocol for which no
adversary succeeds in breaking the game, no matter what code she is running. If
we can achieve this, it will be a truly magnificent achievement. Observe what we
are trying to say here: The protocol works no matter what the adversary decides
to do, as long as our assumptions are respected (such as the polynomiality bounds
on the adversary). We are not merely enumerating a bunch of attacks that we
considered ourselves and arguing that our protocol is secure against these! Instead,
we are arguing against all adversaries, even adversaries that we do not know about
and have not imagined. The ability to argue against all adversaries is the epitome
of human intellect that modern cryptography has achieved, a feat only possible
through the formalism and models of computer science. This proof style is recent
and has only appeared within the last 50 years.

The ideal protocol Π satisfies security against all adversaries:

∀PPTA : GameΠ,A(κ) = 0

However, this is an unattainable goal. To see this, consider the case where the
honest party generates a secret of length κ such as a private key or password. In
that case the adversary can simply attempt to guess this private key at random.
This will be possible with probability 1

2κ . As such, the above goal of requiring that
the game always outputs 0 for all adversaries cannot be attained. Instead, we will
require that any adversary only has negligible probability of succeeding in breaking
these games. Remember that the probability of randomly finding the secret key is
1
2κ and this is a negligible value in κ.

A security definition will look like this:

Definition 2 (Security). A protocol Π is secure with respect to game Game if there
exists a negligible function negl(κ) such that

∀PPTA : Pr[GameΠ,A(κ) = 1] ≤ negl(κ)

We are using probability notation here because the execution of the challenger
with the same honest protocol Π and against the same adversary A and using a fixed
security parameter κ will not always yield the same result! Since both the honest
party and the adversary have access to generate randomness, the challenger will
sometimes report 0, and other times report 1. For a fixed Π and A and κ, there
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is a certain probability that the challenger will report 0, and a certain probability
that the challenger will report 1.

Fixing Π and A, but leaving κ to take any value, we obtain different probabilities
for each value of κ. Therefore, the value denoted by Pr[GameΠ,A(κ) = 0] for a fixed
Π and A is a function of κ. What we are saying here is that this function that
counts the probability must be below some negligible function. Said differently,
that probability must eventually (for sufficiently large κ) become smaller than all
inverse polynomials.

What happens if an adversary attempts to perform multiple guesses for the
secret key? Each of these guesses has a probability of success amounting to 1

2κ . Since
the adversary has polynomial time p(κ), the number of guesses she can perform must
be polynomial, too. What is the probability that at least one of these guesses is
correct? We can apply a union bound [6] to find this.

Theorem 1 (Union Bound). Consider n events X1, X2, · · · , Xn. Then the proba-
bility that any one of them occurs is given by their union bound:

Pr[X1 ∨X2 ∨ · · · ∨Xn] ≤ Pr[X1] + Pr[X2] + · · ·+ Pr[Xn]

Note that this is just an upper bound and these probabilities may not be exactly
equal. To see why, consider the simple example of rolling a die 6 times, hoping to get
a 6. For any one roll, the probability of getting a 6 is 1

6 , and the union bound tells us
that the probability of getting a 6 in any roll across our whole game of 6 rolls is at
most 1. However, the actual probability is in fact a little less: 1− (1− 1

6 )
6 = 0.665.

Here, we calculated the probability of not winning in a single roll, which is 1 − 1
6 .

We then calculated the probability of failing to win in any single roll, which is
(1 − 1

6 )
6. Lastly, we took the complement of this probability, interpreting this to

mean that we won in at least a single roll, obtaining 1− (1− 1
6 )

6. We will use this
style of arguments a lot when counting probabilities about blocks and chains.

Returning to our polynomial adversary, and applying a union bound, we see that
this adversary can succeed with probability at most p(κ)

2κ , which remains negligible,
because poly · negl = negl. This reinforces our reason for adopting the class of
negligible functions as our acceptable probability of failure.

Note here how great the requirements of security that cryptography mandates
are: In a secure protocol, the honest party can act within polynomial time, but
an adversary needs superpolynomial time to break it. The successful honest party
is efficient and lives within the complexity class P, but the successful adversary is
inefficient, and lives within the complexity class NP but not in P. This is illustrated
in Figure 1.2. This is a much bolder claim that the security of traditional money!
In a traditional banknote monetary system, the honest party (such as the govern-
ment) has many more resources than the adversary (say, a forgery criminal). If
the adversary acquires resources equivalent to the honest party (for example access
to the same banknote-printing machines), the system’s security will be compro-
mised. Here, we are achieving something significantly stronger: An honest party
needs only polynomial time to successfully participate in the protocol, but a suc-
cessful adversary will require superpolynomial time to successfully break it — a
huge discrepancy.

When the time comes to prove a protocol secure, we will sometimes make an
assumption that an existing, underlying protocol is secure. Our new protocol will
be built on top of the existing protocol. In the blockchain world, we will take
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P

NP

A

Π

Figure 1.2: In a secure protocol, a successful honest party needs polynomial time,
while a successful adversary needs superpolynomial time.

many underlying primitives for granted: We will make use of hash functions and
signatures assuming they are secure, and leave their design to the cryptographers.
Our theorems will state that if the underlying protocol is secure, then the protocol
we are building on top of the existing primitive is also secure. Said differently, if no
PPT adversary wins in the underlying protocol except with negligible probability,
then also no PPT adversary can win in our new protocol, except with negligible
probability.

The proofs of these theorems will take the form of a computational reduction,
and they will look roughly as follows, when we are designing a new protocol Π∗:

Claim. If protocol Π∗ is secure, then protocol Π, built on top of Π∗, is also
secure.

Proof. Suppose, towards a contradiction, that protocol Π is insecure. Then, by
the game-based security definition, there must exist a PPT adversary A that breaks
Π with non-negligible probability (but we don’t know the exact inner workings of
this adversary, because she is arbitrary). We design a PPT adversary A∗, for which
we write the code and know her inner workings exactly. Somewhere in the code of
A∗ we make use of the code of A as a black box. The adversary A∗ attempts to
break the protocol Π∗ within the confines of the challenger for the protocol Π∗ (a
particular game). The adversary A attempts to break the protocol Π within the
confines of the challenger for the protocol Π (a different game). When A∗ runs,
she simulates the execution of A by invoking her code, as illustrated in Figure 1.3.
When A∗ invokes A, she must do so behaving as if she were the challenger for
protocol Π. The adversary A∗ can invoke A multiple times with different inputs
and collect her outputs before producing an output of her own. Because A runs in
polynomial time, and because A∗ only performs a polynomial number of operations
beyond invoking A a polynomial number of times, therefore A∗ is also a PPT. We
can now evaluate the probability of success of A∗ and relate it to the probability of
success of A, arguing that if the probability of success of A is non-negligible, then
so is the probability of success of A∗. However, this contradicts the assumption
that Π∗ was secure, completing the proof.

This proof style is by contradiction. We can write the same proof in a forward
direction without resorting to a contradiction. This gives a shorter proof, and we
will prefer this style in our writing, following the example of Katz and Lindell [5].
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A* A

Figure 1.3: A computational reduction between two adversaries. Given an adver-
sary A against protocol Π, we construct an adversary A∗ against a protocol Π∗.

These proofs look like this:
Proof. Consider an arbitrary PPT adversary A attempting to break the

protocol Π. We construct an adversary A∗ against the protocol Π∗ by making
use of A as before. For the same reasons as before, A∗ is also PPT, and their
probabilities of success are related. By the security assumption on Π∗, we know
that the probability of success of A∗ against its challenger is negligible. From the
relationship between the probabilities of success of A and A∗, we also deduce that
the probability of success of A is negligible, completing the proof.

The two proofs are identical, with the exception that the second one is a little
more straightforward. Of course, these are rough proof outlines provided to give
a sketch of what to expect next, but are still quite abstract. You will become
acquainted with the particular workings of this style of proof as we work through
particular theorems, particular protocols, and particular games in the next chapters.

1.4 The Network
In our quest to decentralize money, our participants will be nodes on a computer
network. These nodes will each run their software and communicate with one
another. Each of them is connected to some of their peers as illustrated in Figure 1.4.
Contrary to more traditional Internet systems where there is a designated role of a
client and a server, here all peers play the same role: They function both as clients
and as servers of requests.

In this network, not everyone is connected to everyone else, but messages can
reach from one side of the network to the other by travelling through intermediaries.
This is achieved through the gossiping protocol: When a node receives a message it
hasn’t seen before, it forwards it to its peers. That way, everyone eventually learns
about the message. In order to avoid denial-of-service attacks, messages may be
validated in a basic manner before they are gossiped. For example, syntactically
invalid messages will not be gossiped.

We will make a central assumption about the network: That there exists a
path between any two honest parties on the network, which consists of only honest
nodes. Said differently, the network is not split into components whose connection
is controlled by the adversary.

Definition 3 (Non-eclipsing). The non-eclipsing assumption states that, between
every two honest parties on the network, there exists a path consisting only of honest
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Figure 1.4: The peer-to-peer network. Nodes are shown as circles and connections
as lines. The honest nodes are shown in blue, while the adversarial nodes are shown
in black.

nodes.

Note that, for the non-eclipsing assumption to hold, it is not sufficient that every
honest party has a connection to an honest party. There might be components of
honest parties that remain isolated from the rest of the network, as illustrated in
Figure 1.5.

Figure 1.5: An eclipsed peer-to-peer network. Even though every honest party has
an honest connection, the network is partitioned into two disconnected components
by the adversary.

We are introducing this assumption out of necessity. We cannot hope to build
any currency in an eclipsed world. To see why, imagine two completely isolated
civilizations, both maintaining their own separate currency. These civilizations,
given a lack of communication between them, cannot hope to be able to deduce
who owns how much money in their respective counterpart world.

Following our pattern of a powerful adversary, we give the adversary the abil-
ity to create as many identities on the network as she desires. This is termed a
Sybil attack [1]. The adversary may overwhelm an honest party with adversarial
connections as illustrated in Figure 1.6.
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Figure 1.6: A Sybil attacked peer-to-peer network. The non-eclipsing assumption
is not violated.

Definition 4 (Sybil Attack). In a Sybil attackable network model, the adversary
may create as many identities (nodes) as she desires. The honest parties cannot
distinguish which identities have been created by the adversary in this manner.

It is possible that the adversary controls all the connections of an honest party,
except for one connection to an honest party, which is necessary to maintain the
non-eclipsing assumption. Every honest party will certainly be connected to at least
one other honest party.

Ensuring that the non-eclipsing assumption is maintained is a practical engineer-
ing problem and there are many heuristics employed in achieving this. The process
of connecting to other nodes, attempting to ensure at least one honest connection,
is termed peer discovery.

Let us briefly discuss how peer discovery is performed in practical peer-to-peer
networks. When a peer-to-peer node is first booted, it must connect to some of its
peers for the first time. This is the network bootstrapping phase. At this phase,
the node typically will attempt to connect to a list of hard-coded peers whose IP
addresses appear in the implementation source code. Some of these connections may
fail, but if one of them succeeds and connects to an honest party, the newly booted
node can begin to operate. After bootstrapping, whenever the newly booted node
connects to a peer, it asks the connected peer to tell it about the addresses of its
own peers. These peers are then recorded and can be used for further connections.
They can also be reported to other peers asking for peer discovery. The policy
for reporting discovered peers may vary. For example, some nodes may not share
all of their known peers. In case the bootstrapping phase fails, the user is given
the option to manually connect to a peer by entering its address. This allows the
software to survive cases of censorship, or of broad compromise of all the hard-coded
peer addresses.
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Chapter 2

The Application Layer:
UTXO

• Goal: Transparency / verifiability (everyone knows that the money they claim
they have, they *actually* have)

• What is money? How do we know today who owns what? Did we track
it through history? Do we have that history? No – we trust our social
environment. A kind of ”honest majority” setting.

• The adversary

– Problems hard in the average case VS problems hard in the worst case

• Commitment schemes

• The binding and hiding games

• Hashes

• The collision resistance and pre-image resistance games

• Public and private keys

• Signatures, signing, verifying, correctness, security

• The existential unforgeability game

• A transaction

• Addresses

• One input and one output

• Amounts

• Inputs and outputs in UTXO

• Splitting money

• Merging money
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• Conservation Law

• Change

• Outpoints – the transaction graph

• The transaction ledger / transaction serialization

• UTXO as application state

• The evolution of the UTXO

• What money do I own? Calculating balances

• Double spending

• Reading: Chapter 5 introduction and section 5.1 from Modern Cryptography
(2nd ed.)

• Reading: Chapter 12 introduction (skip comparison to MACs and relation
to encryption) and sections 12.1, 12.2, 12.3 from Modern Cryptography (2nd
ed.)

• Exercises 2 and 3
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Chapter 3

Blocks and Chains

• The decentralized setting; the network

• Adversarial and honest nodes, corruption, sybil attacks

• Network delays, message delivery

• Broadcasting transactions to everyone - be your own bank

• Money arising out of social consensus

• The double spending attack

• Simple ideas don’t work: Serializing transactions naively, the critical time Δ

• Proof-of-work as a consensus mechanism without blocks

• The honest computational majority assumption

• The proof-of-work equation; the parameters T and �

• The block

• The chain

• The longest chain rule

• The mempool

• Temporary forks / reorgs

• Coming to an agreement: Blockchain convergence

• The genesis block; the arrow of time

• Verifying chains

• The Chain Growth, Common Prefix, and Chain Quality, intuitively

• Transaction confirmation rules; the Common Prefix parameter k

• The minority double spending attack and its inevitable failure; negligibility
in k

• Maintaining the UTXO under reorgs
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Chapter 4

Blockchain Economics

• The weak conservation law

• Fees

• The coinbase transaction, the inductive base of the UTXO graph

• The money supply

• Supply adjustment in Bitcoin - halving

• The limited total money supply of Bitcoin

• Supply adjustment in Monero - smooth emission

• Empty blocks

• Rational miners, miner incentivisation

• The block size limit

• Collecting transactions into blocks, the knapsack algorithm

• A look at Bitcoin’s blockchain explorer blocks and transactions
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Chapter 5

Blockchain Attacks

• Probability of obtaining a block; the value p

• Attacks of a majority miner

– Censoring transactions
– Double spending
– The impossibility of spending others’ money
– The impossibility of breaking chain growth

• Healing from temporary dishonest majority

– Healing from censorship
– Temporarily rejecting payments: resilience to double spending attacks

• The expected block generation time 1
f

• Balancing the values T and k

– Loss of security due to small k and small T : variance attacks
– Loss of security due to large k and large T : fan-out attacks

• Attacks of a minority miner

– The Selfish Mining attack
– Selfish Mining simulation and bounds for 1/3 and 1/2 adversaries
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Chapter 6

Mining

• Mining hardware: CPUs, GPUs, ASICs

• GetWork / the mining template

• The cost of mining: Empty blocks, optimistic mining

• Mining pools

• The pooled mining protocol

– Why pools? The variance problem
– Decreasing variance while keeping expectation the same
– Centralized pools and pool operators
– Light blocks (shares) and the light PoW equation
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Chapter 7

Wallets

• Online and offline wallets

• Wallet seeds

• Hardware wallets, brain wallets

• Hierarchical Deterministic wallets

• Wallets maintaining own UTXOs

• Collecting UTXOs to create a new transaction
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Chapter 8

The Application Layer:
Accounts

• Maintaining your own UTXOs for spending

• Optimizing for fees: Wallet UTXO selection policy

• p2pk / p2pkh and quantum security

• Hashing a public key

• The transaction as a state machine transition

• The UTXO as a state machine � with transaction transitions �

• Account states: Balances

• A transaction in accounts

• Replaybility and nonces

• The account balances as a state machine � with transaction transitions �

• Practical transactions in Bitcoin and Ethereum

• Look at the Bitcoin and Ethereum transaction graph

• Motivation: Payment conditions and covenants

• Smart contracts in the UTXO model

• Bitcoin scripts
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Chapter 9

Light Clients

• The Random Oracle model

• Random Oracles are collision resistant

• Random Oracle collision resistance security proof

• Random Oracles are pre-image resistant

• Random Oracle pre-image resistance security proof

• Block predictions are difficult in the Random Oracle model

• Authenticated data structures

• Merkle trees

• Building a complete Merkle tree from data

• Building a Merkle tree proof

• Validating a Merkle tree proof

• Merkle trees in the torrent protocol

• Merkle tree game-based security definition

• Merkle tree security theorem and proof

• The SPV protocol

• Light clients

• Sparse Merkle trees, Merkle-Patricia tries: Polynomial data in an exponential
sea

• Light mining using block state commitments

• State commitment in block headers
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Chapter 10

Consensus

• The backbone model in the static difficulty setting

• Interactive Turing machines

• The environment

• Synchronous time: The integer round

• The theoretical network model

• The rushing adversary

• The Sybil adversary

• The parties: The parameters n, t

• The honest majority assumption: The parameter δ

• Mining modeled as a Random Oracle: The parameter q

• The backbone protocol

• Validating blocks

• The longest chain rule

• Mining

• The Chain Growth property: The parameters s and τ

• The Common Prefix property: The parameter k

• The Chain Quality property: The parameters ℓ and µ

• Ledger liveness: The parameter u

• Ledger safety

• Proof of liveness from Chain Growth and Chain Quality

• Calculation of the liveness parameter u
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• Proof of safety from Common Prefix

• Successful rounds and uniquely successful rounds

• The probabilistic treatment using the random variables X, Y , and Z

• Probabilities of success and failure

• Chernoff bound intuition

• Chernoff bound theorem for binomial distributions: The parameter ϵ

• Convergence opportunities

• Uniquely successful rounds avoid fan-out attacks unless matched by adversar-
ial mining power

• The equal computational split model

• The world is a good place: Typical executions

• The distance between X and Y : The block production parameter f

• The distance between Y and Z: The Chernoff error parameter ϵ

• The Chernoff waiting time λ

• The balancing equation 3ϵ+ 3f < δ

• Calculating the relationship between adversarial power (n, t), network diam-
eter, and block production rate

• The Typicality Theorem

• The Chain Growth Lemma

• A proof of the Chain Growth property, calculation of the parameters s = λ
and τ = (1− ϵ)f

• The Chain Slowness Lemma

• The Pairing Lemma

• A proof of the Common Prefix property
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Chapter 11

Smart Contracts

• Smart contracts in the accounts model

• Turing completeness, quasi turing completeness

• Gas, gas price, starting gas

• Contract and personal accounts

• Value transfers between personal accounts

• The smart contract transaction format

• Transaction initiation

• Message passing between contracts

• Smart contract state as a state machine

• Nested Merkle tries

• Receipts

• The Ethereum Virtual Machine

• Contracts, methods

• The ABI

• Contract execution must be deterministic and isolated

• An attack against Common Prefix in a minority-adversary non-deterministic
contract world

• Oracles

• A flight insurance contract

• Validating an HTTPS response from a contract
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